publications

2024

  1. Posterior Uncertainty Quantification in Neural Networks using Data Augmentation
    Luhuan Wu, and Sinead A Williamson
    In International Conference on Artificial Intelligence and Statistics 2024

2023

  1. Practical and Asymptotically Exact Conditional Sampling in Diffusion Models
    Luhuan Wu Wu, Brian Trippe, Christian Naesseth, David Blei, and John Cunningham
    In Conference on Neural Information Processing Systems 2023

2022

  1. Variational Nearest Neighbor Gaussian Process
    Luhuan Wu, Geoff Pleiss, and John Cunningham
    In International Conference on Machine Learning 2022

2021

  1. Bias-free Scalable Gaussian Processes via Randomized Truncations
    Andres Potapczynski, Luhuan Wu, Dan Biderman, Geoff Pleiss, and John P Cunningham
    In International Conference on Machine Learning 2021
  2. Hierarchical Inducing Point Gaussian Process for Inter-domian Observations
    Luhuan Wu, Andrew Miller, Lauren Anderson, Geoff Pleiss, David Blei, and John Cunningham
    In International Conference on Artificial Intelligence and Statistics 2021

2020

  1. Inverse Articulated-body Dynamics from Video via Variational Sequential Monte Carlo
    Dan Biderman, Christian A Naesseth, Luhuan Wu, Taiga Abe, Alice C Mosberger, Leslie J Sibener, Rui Costa, James Murray, and John P Cunningham
    In NeurIPS Workshop on Differentiable Vision, Graphics, and Physics in Machine Learning 2020

2019

  1. Smoothing Nonlinear Variational Objectives with Sequential Monte Carlo
    Antonio Moretti, Zizhao Wang, Luhuan Wu, and Itsik Pe’er
    In ICLR Workshop on Deep Generative Models for Highly Structured Data 2019